713 research outputs found

    DEFORMATIONS OF SPECIAL LEGENDRIAN SUBMANIFOLDS WITH BOUNDARY

    Full text link

    CORRIGENDUM TO “DEFORMATIONS OF SPECIAL LEGENDRIAN SUBMANIFOLDS WITH BOUNDARY” OSAKA J. MATH. 51 (2014), 673–693

    Get PDF

    Does inhibitory repetitive transcranial magnetic stimulation augment functional task practice to improve arm recovery in chronic stroke?

    Get PDF
    Introduction. Restoration of upper extremity (UE) functional use remains a challenge for individuals following stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive modality that modulates cortical excitability and is being explored as a means to potentially ameliorate these deficits. The purpose of this study was to evaluate, in the presence of chronic stroke, the effects of low-frequency rTMS to the contralesional hemisphere as an adjuvant to functional task practice (FTP), to improve UE functional ability. Methods. Twenty-two individuals with chronic stroke and subsequent moderate UE deficits were randomized to receive 16 sessions (4 times/week for 4 weeks) of either real-rTMS or sham-rTMS followed by 1-hour of paretic UE FTP. Results. No differences in UE outcomes were revealed between the real-rTMS and sham-rTMS intervention groups. After adjusting for baseline differences, no differences were revealed in contralesional cortical excitability postintervention. In a secondary analysis, data pooled across both groups revealed small, but statistically significant, improvements in UE behavioral measures. Conclusions. rTMS did not augment changes in UE motor ability in this population of individuals with chronic stroke. The chronicity of our participant cohort and their degree of UE motor impairment may have contributed to inability to produce marked effects using rTMS

    Dual Benefits of Adding Damper Bars in PMSMs for Electrified Vehicles: Improved Machine Dynamics and Simplified Integrated Charging

    Get PDF
    Recently, due to rising environmental concerns and predicted future shortages of fossil fuels, there is a movement towards electrification of the transportation industry. A vast majority of the current research uses permanent magnet synchronous machines as the main traction motor in the drivetrain. This work proposes to add a special damper to a conventional permanent magnet synchronous machine to further improve the suitability of this machine for electrified vehicles. Firstly, an equivalent circuit model is developed to simulate the operation of a conventional PMSM with a damper. A synchronous loading test is proposed to determine the synchronous reactance of the machine. A modified blocked rotor test is used to find the damper parameters assuming that the rotor cage construction is known. Also a single-phase AC test that can be used to determine the damper parameters without prior knowledge of the rotor construction is proposed and presented as an alternative to the blocked rotor test. Thereafter, the models of a 50 kW traction motor and the same machine with damper bars are developed and simulated. The performance of both machines are compared and evaluated. The damper parameters are selected based on the dynamic and steady state performances. It is also shown that the machine with a damper has faster response to a three-phase short circuit fault. In addition, this study also looks into integrated charging which utilizes the existing drivetrain components for vehicle to grid and grid to vehicle operation. The damper is shown to be effective in mitigating the saliency condition caused by the buried magnets of IPMSM at stand-still condition. As a result, the machine windings can be used as line inductors for integrated charging
    corecore